

PROBLEM # 7.1 A simple random sample of 8 employees is selected from a large firm. For the 8 employees, the number of days each was absent during the past month was found to be 0,2,4,2,1,7,3 and 2, respectively.

- a. What is the point estimate for μ , the mean number of days absent for the firm's employees?
- b. What is the point estimate for σ^2 , the variance of the number of days absent?

PROBLEM # 7.2 During the month of July, an auto manufacturer gives its production employees a vacation period so it can tool up for the new model run. In surveying a simple random sample of 200 production workers, the personnel director finds that 38% of them plan to vacation out of state for at least one week during this period. Is this a point estimate or an interval estimate? Explain.

PROBLEM # 7.3 Differentiate between a point estimate and the interval estimate for a population parameter.

PROBLEM # 7.4 What is necessary for an interval estimate to be a confidence interval?

PROBLEM # 7.5 What role does the central limit theorem play in the construction of a confidence interval for the population mean?

PROBLEM # 7.6 In using the standard normal distribution to construct a confidence interval for the population mean, which two assumptions are necessary if the sample size is less than 30?

PROBLEM # 7.7 A simple random sample of 30 has been collected from a population for which it is known that $\sigma = 10.0$. The sample mean has been calculated as 240.0. Construct and interpret the 90% and 95% confidence intervals for the population mean.

	Α	В	С	D		
1	Confidence interval for the population mean,					
2	using the z distribution and known					
3	(or assumed) pop. std. deviation, sigma:					
4						
5	Sample size, n:			30		
6	Sample mean, xbar:			240.000		
7	Known or assumed pop. sigma:			10.0000		
8	Standard error of xbar:			1.82574		
9						
10	Confidence level desired:			0.90		
11	alpha = (1 - conf. level desired):			0.10		
12	z value for desired conf. int.:			1.6449		
13	z times standard error of xbar:			3.003		
14						
15	Lower confidence limit:			236.997		
16	Upper confidence limit:			243.003		

	Α	В	С	D		
1	Confidence interval for the population mean,					
2	using the z distribution and known					
3	(or assumed) pop. std. deviation, sigma:					
4						
5	Sample siz	30				
6	Sample mean, xbar:			240.000		
7	Known or assumed pop. sigma:			10.0000		
8	Standard error of xbar:			1.82574		
9						
10	Confidence level desired:			0.95		
11	alpha = (1 - conf. level desired):			0.05		
12	z value for desired conf. int.:			1.9600		
13	z times standard error of xbar:			3.578		
14						
15	Lower confidence limit:			236.422		
16	Upper confidence limit:			243.578		

PROBLEM # 7.8 When the t-distribution is used in constructing a confidence interval based on a sample size of less than 30, what assumption must be made about the shape of the underlying population?

PROBLEM # 7.9 In using the t distribution table, what value of t would correspond to an upper-tail area of 0.025 for 19 degrees of freedom?

PROBLEM # 7.10 A consumer magazine has contacted a simple random sample of 33 owners of a certain model of automobile and asked each owner how many defects has to be corrected within the first 2 months of ownership. The average number of defects was \bar{x} =3.7, with a standard deviation of 1.8 defects.

- a. Use the t distribution to construct a 95% confidence interval for μ = the average number of defects for this model.
- b. Use the z distribution to construct a 95% confidence interval for μ = the average number of defects for this model.
- c. Given that the population standard deviation is not known, which of these two confidence intervals should be used as the interval estimate for μ ?

PROBLEM # 7.11 For df=25, determine the value of A that corresponds to each of the following probabilities:

- a. P(t >= A) = 0.025
- b. P(t=<A) = 0.10
- c. P(-A = < t <= A) = 0.98

PROBLEM # 7.12 From past experience, a package-filling machine has been found to have a process standard deviation of 0.65 ounces of product weight. A simple random simple is to be selected from the machine's output for the purpose of determining the average weight of product being packed by the machine. For 95% confidence that the sample mean will not differ from the actual population mean by more than 0.1 ounces, what sample size is required?

PROBLEM # 7.13 Under what conditions is it appropriate to use the normal approximation to the binomial distribution in constructing the confidence interval for the population proportion?

PROBLEM # 7.14 It has been estimated that 48% of U.S. households headed by persons in the 35-44 age group own mutual funds. Assuming this finding to be based on a simple random sample of 1000 households headed by persons in this age group, construct a 95% confidence interval for p= the population proportion of such households that own mutual funds. Source: Investment Company Institute, Investment Company Fact Book 2008, p.72.

	Α	В	С	D	E
1	z-Estimate of a Proportion				
2					
3	Sample proportion	0.48	Confidence Interval Estimate		
4	Sample size	1000	0.480	±	0.031
5	Confidence level	0.95	Lower confidence limit		0.449
6			Upper confidence limit		0.511

PROBLEM # 7.15 The Chevrolet dealers of a large county are conducting a study to determine the proportion of car owners in the county who are considering the purchase of a new car within the next year. If the population proportion is believed to be no more than 0.15, how many owners must be included in a simple random sample if the dealers want to be 90% confident that the maximum likely error will be no more than 0.02?

PROBLEM # 7.16 Refer to Problem 7.15, suppose that (unknown to the dealers) the actual population proportion is really 0.35. If they use their estimated value (p=< 0.15) in determining the sample size and then conduct the study, will their maximum likely error be greater than, equal to, or less than 0.02? Why?

2

PROBLEM # 7.17 The makers of Count Chocula breakfast cereal would like to determine, within 2 percentage points and with 99% confidence, the percentage of U.S. senior citizens who have Count Chocula for breakfast at least one a week. What sample size would you recommend?

PROBLEM # 7.18 An airline has surveyed a simple random sample of air travelers to find out whether they would be interested in paying a higher fare in order to have access to email during their flight. Of the 400 travelers surveyed, 80 said e-mail access would be worth a slight extra cost. Construct a 95% confidence interval for the population proportion of air travelers who are in favor of the airline's e-mail idea.

	Α	В	С	D	Е
1	z-Estimate of a Proportion				
2					
3	Sample proportion	0.20	Confidence Interval Estimate		
4	Sample size	400	0.200	±	0.039
5	Confidence level	0.95	Lower confidence limit		0.161
6			Upper confidence limit		0.239

PROBLEM # 7.19 "In surveying a simple random sample of 1000 employed adults, we found that 450 individuals felt they were underpaid by at least \$ 3,000. Based on these results, we have 95% confidence that the proportion of the population of employed adults who share this sentiment is between 0.419 and 0.481." For this summary statement, identify the

- a. Point estimate of the population proportion.
- b. Confidence interval estimate for the population proportion.
- c. Confidence level and the confidence coefficient.

Understanding the Basics: Suggested Problems from the Book.

In **Bold** are the Suggested Problems, in Green are the problems on Connect and the book.

This statistical workbook is compiled from the following books:

- Keller, G. (2012). Statistics for management and economics. Mason: Cengage Learning.
- McClave, J. T., Benson, G. P., & Sincich, T. (2008). *Statistics for Business and Economics*. New Jersey: Prentice Hall.
- Weiers, R. M. (2011). *Introduction to Business Statistics*. Mason: Cengage Learning.
- (GMAC), F. t. (Ed.). (2005). *GMAT -Quantitative Review*. Oxford, UK: Blackwell. Bowerman, B. L., O'Connell, R. T., Murphree, E., Huchendorf, S. C., & Porter, D. C. (2003). *Business statistics in practice*(pp. 728-730). New York: McGraw-Hill/Irwin.