Lesson 7 - Confidence Intervals

At Home Problem Solutions

PROBLEM # 7.6 In this case, we need to assume that the population is normally distributed and the population standard deviation is known.

PROBLEM # 7.8 When n < 30, we must assume that the population is approximately normally distributed.

PROBLEM # 7.9 Referring to the 0.025 column and the d.f. = 19 row of the t table, the value of t corresponding to an upper tail area of 0.025 is t = 2.093.

PROBLEM # 7.11

a) P(t >= A) = 0.025

 $P(t \ge A) = 0.025$. From the 0.025 column and the d.f. = 25 row of the t table, A = 2.060.

b) P(t=<A) = 0.10

 $P(t \le A) = 0.10$. Referring to the 0.10 column and the d.f. = 25 row of the t table, the value of t corresponding to a right-tail area of 0.10 is t = 1.316. Since the curve is symmetrical, the value of t for a left-tail area of 0.10 is A = -1.316.

c) P(-A = < t <= A) = 0.98

 $P(-A \le t \le A) = 0.98$. In this case, each tail will have an area of (1 - 0.98)/2 = 0.01. Referring to the 0.01 column and the d.f. = 25 row of the t table, A = 2.485.

PROBLEM # 7.17

For the 99% level of confidence, z=2.58. The maximum likely error is e=0.02 (2 percentage points). If we make no estimate regarding the actual population proportion, we can be conservative and use p=0.5. The recommended sample size would be:

$$n = \frac{z^2 p(1-p)}{e^2} = \frac{2.58^2 (0.5)(1-0.5)}{0.02^2} = 4160.25$$
, rounded up to 4161

Persons who are aware that Count Chocula is a kid's cereal, and that senior citizens don't tend to consume the product, might want to use a lower estimate, such as p = 0.10. In this case, we would end up with a recommended sample size of just 1498.

PROBLEM # 7.18

Using the Estimators workbook that accompanies Data Analysis Plus:

	А	В	С	D	Е
1	z-Estimate of a Proportion				
2					
3	Sample proportion	0.20	Confidence Interval Estimate		
4	Sample size	400	0.200	±	0.039
5	Confidence level	0.95	Lower confidence limit		0.161
6			Upper confidence limit		0.239

PROBLEM # 7.19

point estimate of the population proportion.

point estimate of
$$\pi$$
: $p = \frac{450}{1000} = 0.45$

a. Confidence interval estimate for the population proportion.

confidence interval for π :0.419 to 0.481

b. Confidence level and the confidence coefficient.

confidence level: 95%; confidence coefficient: 0.95