# **Lesson 9 - Chi-Square Tests**

#### At Home Problem Solutions

# **PROBLEM # 9.10** The null and alternative hypotheses are:

 $H_0$ : The age distribution of drivers in fatal accidents in the state is like that for all U.S. drivers.

 $H_1$ : The age distribution of drivers in fatal accidents in the state is not like that for all U.S. drivers.

With d.f. = 3 - 1 - 0 = 2, the critical value of chi-square at the 0.05 level is 5.991.

Using Excel worksheet template tmchifit, the C column shows the individual components and cell E4 shows their sum, the calculated chi-square. The calculated value (13.654) exceeds the critical value, and we reject  $H_0$ . At the 0.05 level, the age distribution of drivers involved in fatal accidents within the state is not like that for all U.S. drivers. Alternatively, using the p-value approach, we are able to reject  $H_0$  because p-value = 0.0011 is <  $\alpha$  = 0.05.

|   | А                               | В              | С             | D                                | Е      |
|---|---------------------------------|----------------|---------------|----------------------------------|--------|
| 1 | Chi-Square Goodness-of-Fit Test |                | est           | no. of cells, k =                | 3      |
| 2 | Cell Frequencies                | s:             |               | no. of parameters estimated, m = | 0      |
| 3 | Observed (Oj):                  | Expected (Ej): | (Oj-Ej)^2/Ej: | df = k - 1 - m =                 | 2      |
| 4 | 42                              | 26.4           | 9.218         | calculated chi-square =          | 13.654 |
| 5 | 80                              | 75.4           | 0.281         | p-value =                        | 0.0011 |
| 6 | 78                              | 98.2           | 4.155         |                                  |        |

### **PROBLEM # 9.15**

The null and alternative hypotheses are:

H<sub>0</sub>: Age and prescription form are independent

H<sub>1</sub>: Age and prescription form are not independent

With d.f. = (3 - 1)(2 - 1) = 2, the critical value of chi-square at the 0.025 level is 7.378. We will use Excel worksheet template tmchivar. The printout below shows the actual frequencies, the expected frequencies, the calculated chi-square, and the p-value. The calculated chi-square does not exceed the critical value, and we do not reject  $H_0$ . Using the table in the appendix, we can determine that the p-value for this problem is between 0.05 and 0.10.

Alternatively, because p-value = 0.067 is not <  $\alpha$  = 0.025 level of significance for the test, we do not reject H<sub>0</sub>. At this level, age and prescription form are independent.

|    | А В              |         | С       | D      | E                | F     |
|----|------------------|---------|---------|--------|------------------|-------|
| 1  | Chi-Square Test  |         |         |        |                  |       |
| 2  | for Indepe       | ndence: |         |        |                  |       |
| 3  | Observed I       | Freqs.: |         |        |                  |       |
| 4  |                  | Brand   | Generic |        |                  |       |
| 5  | < 40             | 28      | 16      | 44     |                  |       |
| 6  | 40 - 60          | 24      | 28      | 52     |                  |       |
| 7  | > 60             | 22      | 32      | 54     |                  |       |
| 8  |                  | 74      | 76      | 150    |                  |       |
| 9  | Expected Freqs.: |         |         |        |                  |       |
| 10 |                  | Brand   | Generic |        |                  |       |
| 11 | < 40             | 21.71   | 22.29   | 44.00  |                  |       |
| 12 | 40 - 60          | 25.65   | 26.35   | 52.00  |                  |       |
| 13 | > 60             | 26.64   | 27.36   | 54.00  |                  |       |
| 14 |                  | 74.00   | 76.00   | 150.00 |                  |       |
| 15 |                  |         |         |        | no. rows         | 3     |
| 16 |                  |         |         |        | no. cols.        | 2     |
| 17 |                  |         |         |        | d.f.             | 2     |
| 18 |                  |         |         |        | calc. chi-square | 5.407 |
| 19 |                  |         |         |        | p-value          | 0.067 |

# **PROBLEM # 9.16**

# **Education Level**

|            |         | High<br>School | Some<br>College | College<br>Grad | Graduate<br>Study |         |
|------------|---------|----------------|-----------------|-----------------|-------------------|---------|
| Bag        | Paper   | 14             | 13              | 34              | 2                 | 63      |
| Selection  | Plastic | 17             | 19              | 19              | 3                 | 58      |
| No Prefere | nce     | 8              | 28              | 13              | 5                 | 54      |
|            |         | 39             | 60              | 66              |                   | <br>175 |

The null and alternative hypotheses are:

H<sub>0</sub>: Bag preference and level of education are independent

H<sub>1</sub>: Bag preference and level of education are not independent

Categories have been combined so each expected frequency will be  $\geq 5$ . With d.f. = (3 - 1)(3 - 1) = 4,

the critical value of chi-square at the 0.01 level is 13.277. We will use Excel worksheet template tmchivar. The printout below shows the actual frequencies, the expected frequencies, the calculated chi-square, and the p-value. The calculated chi-square exceeds the critical value, and we reject  $H_0$ .

Using the table in the appendix, we can determine that the p-value for this problem is less than 0.01.

Alternatively, because p-value = 0.004 is <  $\alpha$  = 0.01 level of significance for the test, we reject  $H_0$ .

At this level, bag preference and education level are not independent.

|    | Α                  | В       | С      | D         | Е      | F                | G      |
|----|--------------------|---------|--------|-----------|--------|------------------|--------|
| 1  | Chi-Square Test    |         |        |           |        |                  |        |
| 2  | for Indepe         | ndence: |        |           |        |                  |        |
| 3  | Observed I         | =reqs.: |        |           |        |                  |        |
| 4  |                    | HS      | Some C | C or Grad |        |                  |        |
| 5  | Paper              | 14      | 13     | 36        | 63     |                  |        |
| 6  | Plastic            | 17      | 19     | 22        | 58     |                  |        |
| 7  | No Pref            | 8       | 28     | 18        | 54     |                  |        |
| 8  |                    | 39      | 60     | 76        | 175    |                  |        |
| 9  | 9 Expected Freqs.: |         |        |           |        |                  |        |
| 10 |                    | HS      | Some C | C or Grad |        |                  |        |
| 11 | Paper              | 14.04   | 21.60  | 27.36     | 63.00  |                  |        |
| 12 | Plastic            | 12.93   | 19.89  | 25.19     | 58.00  |                  |        |
| 13 | No Pref            | 12.03   | 18.51  | 23.45     | 54.00  |                  |        |
| 14 |                    | 39.00   | 60.00  | 76.00     | 175.00 |                  |        |
| 15 |                    |         |        |           |        | no. rows         | 3      |
| 16 |                    |         |        |           |        | no. cols.        | 3      |
| 17 |                    |         |        | ·         |        | d.f.             | 4      |
| 18 |                    |         |        |           |        | calc. chi-square | 15.360 |
| 19 |                    |         |        |           |        | p-value          | 0.004  |

Using Data Analysis Plus, and combining the third and fourth education-level categories, we obtain the comparable results shown below:

|    | Α           | В          | С        | D        | Е     |
|----|-------------|------------|----------|----------|-------|
| 1  | Contingen   | cy Table   |          |          |       |
| 2  |             |            |          |          |       |
| 3  |             | Column 1   | Column 2 | Column 3 | TOTAL |
| 4  | Row 1       | 14         | 13       | 36       | 63    |
| 5  | Row 2       | 17         | 19       | 22       | 58    |
| 6  | Row 3       | 8          | 28       | 18       | 54    |
| 7  | TOTAL       | 39         | 60       | 76       | 175   |
| 8  |             |            |          |          |       |
| 9  | chi-squared | d Stat     |          | 15.360   |       |
| 10 | df          |            |          | 4        |       |
| 11 | p-value     |            |          | 0.004    |       |
| 12 | chi-squared | d Critical |          | 13.277   |       |

# **PROBLEM # 9.17**

$$n_1 = 100$$
  $p_1 = 0.20$   $n_2 = 120$   $p_2 = 0.25$   $n_3 = 200$   $p_3 = 0.18$ 

The null and alternative hypotheses are:

H<sub>0</sub>: The population proportions are equal

H<sub>1</sub>: At least one population proportion differs

This test can be performed using Minitab. First, we must compute the observed counts for each cell. These are simply the proportion \* n and (1 - the proportion) \* n. The degrees of freedom for this test are (2 - 1)(3 - 1) = 2, and the critical value of chi-square at the 0.05 level is 5.991. Since the calculated value is less than the critical value, we do not reject H<sub>0</sub>. At this level, there is no evidence to suggest that at least one population proportion differs from the others. Alternatively, we fail to reject H<sub>0</sub> because p-value = 0.321 is not <  $\alpha$  = 0.05 level of significance for the test.

Chi-Square Test: C1, C2, C3

Expected counts are printed below observed counts

Chi-Square contributions are printed below expected counts

```
C1
               C2
                       C3 Total
         20
                30
                       36
                              86
      20.48 24.57
                    40.95
      0.011 1.199
                    0.599
         80
                90
                      164
                            334
      79.52 95.43 159.05
      0.003 0.309
                    0.154
Total
      100
            120
                      200
Chi-Sq = 2.275, DF = 2, P-Value = 0.321
```