COMM 215: BUSINESS STATISTICS

SOLUTIONS TO PRACTICE PROBLEMS 1

Descriptive Statistics

1. a.

b.

c.

Leat	f-unit = 0.01	Leaf Ur	nit = 0.10
0 1 2 3 4 5 6 7 8	26, 45, 52, 81, 85, 88, 91, 94 01, 22, 42, 91, 92, 94 25, 33, 51, 62, 66, 93, 95, 95 51, 60, 72 91 19 71 96 81	0 1 2 3 4 5 6 7 8	24588899 024999 23566999 567 9 1 7 9 8
i.	$\bar{X} = 2.689$ Median = 2.29 Mode = 2.95		
ii.	Q1 = the 8^{th} ordered value = 0.94 Q3 = the 23^{rd} ordered value = 3.51		
iii.	Range = $8.81 - 0.26 = 8.55$, IQR = $3.51 - 0.94 =$	2.57	
iv.	$S^2 = 4.69, \qquad S = 2.166$		
1.5 (IQR)	$1.5 (2.57) = 3.855, \qquad Q1 - 3.855 = -2.92, \qquad Q3$	3 + 3.855 =	= 7.37
Two o	outliers whose values are 7.96 and 8.81		
	I + I	* *	
+- 0.0	1.6 3.2 4.8 6.4	8.0	-minutes

a. Leaf Unit = 1.0

> 0 8 1 0 5 2 2 4 5 3 0 5 5 8 4 03

b. $X_{min} = 8$, Q1 = 18.5, Q2 = 27.5, Q3 = 36.5, $X_{max} = 43$ c. $\overline{X} = 27.083$, S = 11.735d. 40^{th} . Percentile = the 5th ordered value = 24

3. a.

2.

0 0 1 1 2 2 3	3 5689 00244 8 014 5 3	or	0 1 2 3	35689 002448 0145 3
---------------------------------	--	----	------------------	------------------------------

b. 30^{th} percentile: 9 70^{\text{th}} percentile: 17 (.7) = 20

c. Q1 = 9, Q3 = 20.5 IQR = 11.5 1.5(IQR)=17.25 Q3 + 1.5(IQR) = 37.75Yes, 42 days would be considered an outlier.

i. \overline{X} = \$3430, Median = \$3500, Mode = \$3500 ii. Q1 = \$2,350, Q3 = \$4,450 iii. Range = 5200 - 1000 = \$4,200; IQR = 4450 - 2350 = \$2,100 iv. S² = 1,560,105; S = \$1,249

Compute: (1.5) IQR+Q3 = 7600. No outliers

- b. C.V. retainers = (1249/3430) *100 = 36.4%
 C.V total compensation = (20,000/120,000) * 100 = 16.67%
 No, each retainer is relatively more variable.
- **5.** a.

	Fi	Cumulative	Cumulative relative
20-24	3	3	0.05
25-29	7	10	0.167
30-34	11	21	0.35
35-39	13	34	0.57
40-44	9	43	0.717
45-49	7	50	0.833
50-54	5	55	0.917
55-59	3	58	0.967
60-64	1	59	0.983
65-69	1	60	1

b. Right or positively skewed.

0

 $\overline{X} = \$2491.25$ S= \$282.11 6. CV = 11.32% a. The median = \$2405; 40^{th} percentile: = \$2390b. CV = 320/3600 = 0.0889 * 100 = 8.89%с No, they are less variable or smaller C.V. $\bar{X} = 696.809$ 7. S = 483.188a. b. -----I + I------*

IQR = 857 - 378 = 479 IQR (1.5) = 718.5, 857 + 718.5 = 1575.5Therefore, the data value 2063 is an outlier.

400 800 1200 1600 2000

- c. Point where 50% of the observations are more than \$684 and 50% are less
- d. The proportion below $\overline{X} 1S = 213.6$ plus the proportion above $\overline{X} + 2S = 1663.2$ You would expect: 0.34 + 0.475 = 0.815 or 81.5%Actually proportion: out of 21, there are a total of 17 in the two regions giving 17/21 = 0.809 or 80.9%.

8. b. a. Leaf Unit = 0.10 $X_{\text{minimum}} = 0.2;$ Q1 = 1.45;0 2455789 O2 = 3.0;Q3 = 5.551 124589 2 34457889 $X_{\text{maximum}} = 9.7$ 3 13347 4 247 5 2568 6 238 7 68 8 9 57 c. + I-----_____ ---T _____ _____ _____ 0.0 2.0 4.0 6.0 8.0 10.0 IQR(1.5) = 6.15;5.55 + 6.15 = 11.7There are no outliers.

- d. Distribution is positive or right skewed.
- 9. a. Cov(x,y) = -15.133 indicating a negative or an inverse linear relationship between price and demand
 - b. r = -15.133/((1.94)(8.214)) = -0.9496, indicating a strong inverse or negative linear association between price and demand.

- 10. Nonsampling errors occur due to incorrect acquisitions of observations, improper selections samples, and the lack of response from individual in the sample. Examples are:
 - 1. data acquisitions: wrong measurements on employees information (answers may vary)
 - 2. exclusion of part-time employees from the sample (answers may vary)
 - 3. missing information on employees characteristics; responses coming only from people who have strong feeling about the issues (answers may vary)

Probability

1.

	Ε	U		.6 U = WU
Μ	.52	.08	.60	.6 (.2) = .12
W	.28	.12	.40	.3W = WU,
	.80	.20		.3W = .12,
	•			W = .4

- P(W) = 0.40a.
- P(U/M) = 0.08 / 0.60 = .13b.

P(Strike) = .15 + .26 + .03 = .44

3.

a. (.9)(.9) = .81

b. (.1)(.1) = .01c. (.9)(.1) + (.1)(.9) + (.9)(.9) = .99 or 1 - 0.01 = 0.99

5.

- a. $P(<30 \text{ or } 1^{st}) = 1 (.07 + .09 + .05) = .79$
- b. P(repeat | < 30) = (.01+.02+.04)/.43 = .16c. $P(\ge 30 | 1^{st}) = .36/.72 = .50$ $P (\geq 30 | repeat) = .21/.28 = .75;$ repeat offender is more likely to be ≥ 30
- d. 50^{th} p of first offenders = .36 = 30a. 50^{th} p of repeat offenders = .14 = 35, repeat offenders are older
- e. (.28)(.28) = .0784

a. P (X \ge .01) = 11.1 + 41 = 52.1% **b.** $P(X>0.1|X^3|0.01) = .41 / .521 = .7869$

0.171

6

- 7. a. i. 365/500 = .73 iii. 30/500 = .06ii. 110/340 = .3235 iv. $\frac{230 + 140 - 30}{500} = .68$
 - b. Not mutually exclusive since P (work pt-time and < 6) = 60/500 = .12. It will be zero if mutually exclusive.

Independent if P(work pt. time) * P(<6) = P(work pt. time and < 6)

Since $135/500 * 140/500 \neq .12$, the two are not independent.

8.

	Р	S	А	
U	0.125	0	0.06	0.185
U^{C}	0.125	0.15	0.54	0.815
	0.25	0.15	0.60	1

a. P(U) = 0.185

b. $P(A|U^c) = .54/.815 = .6625$

9.

a.

	City			
Own Stock	А	В	С	Total
YES	85	55	50	190
	(.17)	(.11)	(.10)	(.38)
NO	115	95	100	310
	(.23)	(.19)	(.20)	(.62)
Total	200	150	150	500
	(.40)	(.30)	(.30)	(1.0)

b. i. P(YES) = 0.38;

ii. P(YES and A) = 85/500 = 0.17;

iii. P(B and NO) = 95/500 = 0.19;

iv. P(B and YES) = 215/500 = 0.43

c. P(NO / NOT B) = 215/350 = 0.614

a. 0.4 + (.6) (.5) = .70 b. 0.12 + .06 = .18

8

	Defective (D)	Not Defective (ND)	
1	.008	.392	.40
2	.0075	.2925	.30
3	.0045	.2955	.30
	.02	.98	

- b. P(1/D) = .008/.02 = .40
- c. P(D or 2) = .02 + .03 .0075 = .3125
- d. P(D) = .02
- e. P(2/D) = P(2) = .0075/.02 = .375 = .30; not independent

13. a.

	Е	U	
М	.5	.04	.54
F	.43	.03	.46
	.93	.07	1

- b. P(F/U) = .03/.07 = .428
- c. i. P(um*um) = (.04) (.04) = .0016 ii. P(1 or 2)

Easiest way would be with Binomial (but not the only way)

(Combination of 2 and 1) (.04) (.96) + (Combination of 2 and 2) $(.04)^2 (.96)^0 = .0784$

- d. P(U) = .07
- e. P(Males) = .54 P(Male/U) = 0.04/0.07 $.54 \neq .571$

Therefore they are not independent

(Can use any of the formulas as long as it is correct)

$$P(A \cap B) = P(A) * P(B) \qquad P(A|B) = \frac{P(A \cap B)}{P(B)} \qquad P(B|A) = \frac{P(A \cap B)}{P(B)}$$

Discrete Probability Distribution / Binomial Distribution

1.

a.

	1st	2nd	3rd	Total
	.9 (.2)=0.18	.7 (.3)=0.21	.8(.5)=0.4	0.79
Regular	\$4.00	\$2.00	\$0.50	
	.1 (.2)=0.02	.3 (.3)=0.09	.2 (.5)=0.10	0.21
Reduced	\$2.00	\$1.00	\$0.25	
Total	0.20	0.30	0.50	1

P(regular) = .79

- b. $P(1^{st}/regular) = .18/.79 = .227$
- c. $\mu = .18(4) + .21(2) + .4(.50) + .02(2) + .09(1) + .10(.25)$ = \$1.495

 $\mu_{regular} = \frac{.18(4) + .21(2) + .4(.5)}{.79} = \1.696

d.
$$P(X \ge 2 / n = 8, p = .21) = 1 - {f(0) + f(1)}$$

$$P(0) = (Combination of 8 and 0) (.21)^{0} (.79)^{8} = .1517$$

$$P(1) = (Combination of 8 and 1) (.21)^{1} (.79)^{7} = .3226$$

$$1 - (.1517 + .3226) = .5257$$

E (X) = 8 (.21) = 1.68; $\sigma = \sqrt{1.68(.79)} = 1.15$

e. 1.495 (75000) = 112,125 or 1.50 (75000) = 112,500

2. a. X = arrive on time p = .75P(X = 4 / n = 4, p = .75) = .3164

b.
$$P(X = 3) + P(X = 4) = .4219 + .3164 = 0.7383$$

3.
$$.05(2) + .15(5) + .25(10) + .35(20) + .10(50) + .10(100)$$

 $\mu = \sum Xi^* P(X) = \$25.35, \qquad \sigma^2 = \Sigma (X - \mu)^2 P(X) = 776.33$

4. a.
$$\mu = np = 12(.30) = 3.6 people \ \mu = np = 12(.30) = 3.6 people$$

b. $P(X \ge 3 / n = 12, p = .30) = 1 - (f(0) + f(1) + f(2))$
 $1 - (.0138 + .0712 + .1678) = .7472$

COMM 215 – Solution to Practice Problems 1

c.
$$P(X \ge 4 / n = 12, p = .30) = 1 - (f(0) + f(1) + f(2) + f(3))$$

1 - .4925 = 0.5075

5. a.
$$E(X) = .3 (100) + .2 (100) + .7 (100) = $120$$

b. $Var(X) = \sum (X - \mu)^2 P(x) = 480.00

6.

a.
$$\sum (X - \mu)^2 P(x) = $480.00$$

 $P(X=3 / n = 15, p = .05) = (Combination of 15 and 3) (.05)^3 (.95)^{12} = .0307$
b. $P(X \ge 3 / n = 15, p = .05) = 1 - (f(0) + f(1) + f(2)) = 0.0361$

c. If P is actually .05, than $P(X \ge 3)$ is very small therefore it is unlikely.

7.

a.
$$E(X) = \mu = 10 (.2) = 2;$$
 standard deviation = $\sqrt{10(.2)(.8)} = 1.6$
b. $P(X \le 2 / n = 10, p = .2) = .1074 + .2684 + .3020 = .6778$
c. $P(X=3 / n = 10, p = .8) = (Combination of 10 and 3) (.8)^3 (.20)^7 = .000786$
d. $p = .2/(1-.2) = 0.25$ $P(X \le 2 / n = 9, p = .25) = 0.60$

8.

a. Mean =
$$\sum Xp(x) = 1.98$$

b.
$$Var(x) = \sum (x - \mu)^2 p(x) = 1.919$$
 Standard

Standard deviation = 1.385

c. Expected Profit = 1.98 (2000) = \$3,960 d. $P(X_1 + X_2 < 3) = P\{(0,0), (0,1), (0,2), (1,0), (1,1), (2,0)\}$ = (.15)(.15) + (.15) (.24) + (.15)(.31) + (.24) (.15) + (.24) (.24) + (.31) (.15) = .2451

9.

a.
$$P(X = 6 / n = 12, p = .30) = .0792$$

- b. $P(X \ge 6) = 1 P(X \le 5) = .1179$
- c. $P(X \le 2) = f(0) + f(1) + f(2) = .2528$
- d. E(X) = np = 12 (.3) = 3.6, or 3.6 (100) = \$360

10.

- a. E(X) = 0(.48) + 1(.2) + 2(.15) + 3(.08) + 4(.05) + 5(.03) + 6(.01) = 1.15, Var(X) = 2.1075
- b. f(2) + f(3) = .15 + .08 = .23
- c. $P(X \ge 2) = 1 (.48 + .20) = .32$
- d. P(X<3) = P(0,0) + P(0,1) + P(0,2) + P(1,0) + P(1,1) + P(2,0) = .6064

11.

- a. $P(X \ge 3) = 1 {f(0) + f(1) + f(2)} = 0.74$
- b. $P(2 \le X \le 5) = f(2) + f(3) + f(4) + f(5) = 0.67$
- c. E(X) = 0 (.05) + 1 (.08) + 2 (.13) + 3 (.23) + 4 (.18) + 5 (.13) + 6 (.08) + 7 (.06) + 8 (.06) = 3.78d. $\sigma = \sqrt{4.2} = 2.04$

12.

a.
$$E(X) = 0(.1) + 1000(.3) + 2000(.4) + 3000(.2) = $1700$$

b.

Sales (x)	Net Profit	P(X)	
0	-28500	.1	-2850
1000	-12500	.3	-3750
2000	3500	.4	1400
3000	19500	.2	3900
	\$-1300		

13.

- a. $P(X \ge 9 / n = 15, p = .7) = 1 P(X \le 8) = 1 .131 = 0.869$
- b. $P(X \ge 12 / n = 15, p = .7) = 1 P(X \le 11) = 1 .703 = 0.297$
- c. $P(X \le 2 / n = 15, p = .25) = p(0) + p(1) + p(2)$ = .0134 + .0668 + .1559 = 0.236
- d. 0.297 (250) = 74.25

14.

- a. p(1) + p(4) + p(5) = .25 + .15 + .10 = 0.5
- b. 1(.25) + 2(.33) + 3(.17) + 4(.15) + 5(.10) = 2.52
- c. $\sigma = \sqrt{1.649} = 1.28$

15.

- a. $P(X=10 / n = 10, p = .6) = (Combination of 10 and 10) (.6)^{10} (.4)^{0} = .006$
- b. $P(X \le 2) = p(0) + p(1) + p(2) = .0001 + .0016 + .0106 = .0123$

Normal Probability Distributions

4. c.
$$p(x \ge 1) = 1 - p(x - 0)$$

 $p(x = 0) = \frac{10!}{0!10!} (.54)^{*} (.46)^{**} = 0.000424$
 $1 - 0.000424 = 0.999576$
d. $p(x \le 15) = p\left(z \le \frac{15 - 20}{5}\right) = p(z \le 1) = 0.5 - 0.3413$
 $= 0.1587 \times 200 = 31.74 \approx 32$
5. a. $p(x > 140.5) = p\left(z > \frac{140.5 - 140}{0.2}\right) = p(z > 2.5) =$
 $.05 - 0.4938 = 0.0062$
b. $p(140.2 \le x \le 140.5) = z\left(\frac{140.2 - 140}{0.2}\right) = 1.0$
 $p(1.0 \le z \le 2.5) = 0.4938 - 0.3413 = 0.1525$
c. $p(x < 139.8)$ or $p(x > 140.2)$
 $p(z < -1)$ or $p(z > +1) = 0.5 - 0.3413 = 0.1587 \times 2 = 0.3174$
d. $p(x = 0 / n = 15, p = 0.3174) = \frac{151}{0!15!} (0.3174)^{6} (0.6826)^{19} = 0.0033$
e. $p(x \le 5 / n = 15, p = 0.3174) = \frac{151}{5!10!} (0.3174)^{4} (0.6826)^{19} = 0.2110$
6. a. $p(x \le 6) = z\left(\frac{6 - 12}{3}\right) = -2.0 \quad p(z \le -2) = 0.5 - 0.4772 = 0.0228$
b. $p(x > 15) = p\left(z > \frac{15 - 12}{3}\right) = p(z > 1.0) = 0.5 - 0.3413 = 0.158$
c. $z = \frac{x - \mu}{\sigma}$ $1.28 = \frac{x - 12}{3}$ $x = 15.84 \approx 16$ weeks
7. a. $p(x \le 200) = p\left(z \le \frac{210 - 250}{45}\right) = p(z < -0.8) = 0.2881 + 0.5 = 0.7881$
b. $p(x \le 200) = p\left(z \le \frac{200 - 250}{45}\right) = p(z \le -1.11) = 0.5 - 0.3665 = 0.1135$
Thus, 11.35% of 52 weeks. That is, 0.1135×52 weeks = 6.9 \approx 7 weeks
c. Find the 60th percentile, such that $P(Z \le z^*) = 0.6$,
where $z^* = \frac{x^* - 250}{45}$. From table, $z^* = 0.2533$. Then, $0.2533 = \frac{x^* - 250}{45}$,

and solving for x*=0.2533*45+250=261.4006

· · · · · ·

14