Discrete probability distributions ## MULTIPLE CHOICE | 1. | A numerical description of the outcome of an experiment is called a a. descriptive statistic b. probability function c. variance d. random variable | | | | | |----|--|--|--|--|--| | | ANS: D PTS: 1 TOP: Discrete Probability Distributions | | | | | | 2. | 2. A continuous random variable may assume a. any value in an interval or collection of intervals b. only integer values in an interval or collection of intervals c. only fractional values in an interval or collection of intervals d. only the positive integer values in an interval | | | | | | | ANS: A PTS: 1 TOP: Discrete Probability Distributions | | | | | | 3. | An experiment consists of determining the speed of automobiles on a highway by the use of radar equipment. The random variable in this experiment is a a. discrete random variable b. continuous random variable c. complex random variable d. simplex random variable | | | | | | | ANS: B PTS: 1 TOP: Discrete Probability Distributions | | | | | | 4. | 4. The weight of an object is an example of a. a continuous random variable b. a discrete random variable c. either a continuous or a discrete random variable, depending on the weight of the object d. either a continuous or a discrete random variable depending on the units of measurement | | | | | | | ANS: A PTS: 1 TOP: Discrete Probability Distributions | | | | | | 5. | A description of the distribution of the values of a random variable and their associated probabilities is called a a. probability distribution b. random variance c. random variable d. expected value | | | | | | | ANS: A PTS: 1 TOP: Discrete Probability Distributions | | | | | | 6. | Which of the following is not a required condition for a discrete probability function?
a. $f(x) \ge 0$ for all values of x
b. $\sum f(x) = 1$ for all values of x
c. $\sum f(x) = 0$ for all values of x
d. $\sum f(x) \ge 1$ for all values of x | | | | | | | ANS: C PTS: 1 TOP: Discrete Probability Distributions | | | | | The police records of a metropolitan area kept over the past 300 days show the following number of fatal accidents. | Number of Fatal | | | |-----------------|----------------|--| | Accidents | Number of Days | | | 0 | 45 | | | 1 | 75 | | | 2 | 120 | | | 3 | 45 | | | 4 | 15 | | - 7. Refer to Exhibit 5-12. What is the probability that in a given day there will be less than 3 accidents? - a. 0.2 - b. 120 - c. 0.5 - d. 0.8 - ANS: D - PTS: 1 - TOP: Discrete Probability Distributions - 8. Refer to Exhibit 5-12. What is the probability that in a given day there will be no accidents? - a. 0.00 - b. 1.00 - c. 0.85 - d. 0.15 - ANS: D - PTS: 1 - TOP: Discrete Probability Distributions TOP: Discrete Probability Distributions 9. Variance is ANS: B - a. a measure of the average, or central value of a random variable - b. a measure of the dispersion of a random variable PTS: 1 - c. the square root of the standard deviation - d. the sum of the squared deviation of data elements from the mean - 10. The standard deviation is the - a. variance squared - b. square root of the sum of the deviations from the mean - c. same as the expected value - d. positive square root of the variance - ANS: D - PTS: 1 - TOP: Discrete Probability Distributions - 11. A weighted average of the value of a random variable, where the probability function provides weights is known as - a. a probability function - b. a random variable - c. the expected value - d. random function - ANS: C - PTS: 1 - **TOP:** Discrete Probability Distributions - 12. The expected value of a discrete random variable - a. is the most likely or highest probability value for the random variable - b. will always be one of the values x can take on, although it may not be the highest probability value for the random variable - c. is the average value for the random variable over many repeats of the experiment - d. None of these alternatives is correct. ANS: C PTS: 1 TOP: Discrete Probability Distributions 13. X is a random variable with the probability function: $$f(X) = X/6$$ for $X = 1, 2$ or 3 The expected value of X is - a. 0.333 - b. 0.500 - c. 2.000 - d. 2.333 ANS: D PTS: 1 TOP: Discrete Probability Distributions #### Exhibit 5-1 The following represents the probability distribution for the daily demand of computers at a local store | Demand | Probability | |---------------|-------------| | 0 | 0.1 | | 1 | 0.2 | | 2 | 0.3 | | 3 | 0.2 | | 4 | 0.2 | - 14. Refer to Exhibit 5-1. The probability of having a demand for at least two computers is - a. 0.7 - b. 0.3 - c. 0.4 - d. 1.0 ANS: A PTS: 1 TOP: Discrete Probability Distributions Roth is a computer-consulting firm. The number of new clients that they have obtained each month has ranged from 0 to 6. The number of new clients has the probability distribution that is shown below. | Number of | | |-------------|-------------| | New Clients | Probability | | 0 | 0.05 | | 1 | 0.10 | | 2 | 0.15 | | 3 | 0.35 | | 4 | 0.20 | | 5 | 0.10 | | 6 | 0.05 | 15. Refer to Exhibit 5-3. The variance is - a. 1.431 - b. 2.047 - c. 3.05 - d. 21 ANS: B PTS: 1 TOP: Discrete Probability Distributions ## Exhibit 5-5 **Probability Distribution** | \mathbf{X} | f(x) | |--------------|------| | 10 | .2 | | 20 | .3 | | 30 | .4 | | 40 | .1 | 16. Refer to Exhibit 5-5. The expected value of x equals - a. 24 - b. 25 - c. 30 - d. 100 ANS: A PTS: 1 TOP: Discrete Probability Distributions A sample of 2,500 people was asked how many cups of coffee they drink in the morning. You are given the following sample information. | Cups of Coffee | Frequency | |-----------------------|-----------| | 0 | 700 | | 1 | 900 | | 2 | 600 | | 3 | _ 300 | | | 2,500 | - 17. Refer to Exhibit 5-6. The expected number of cups of coffee is - a. 1 - b. 1.2 - c. 1.5 - d. 1.7 ANS: B PTS: 1 TOP: Discrete Probability Distributions ## Exhibit 5-9 The probability distribution for the daily sales at Michael's Co. is given below. | Daily Sales (In \$1,000s) | Probability | | |---------------------------|-------------|--| | 40 | 0.1 | | | 50 | 0.4 | | | 60 | 0.3 | | | 70 | 0.2 | | - 18. Refer to Exhibit 5-9. The expected daily sales are - a. \$55,000 - b. \$56,000 - c. \$50,000 - d. \$70,000 ANS: B PTS: 1 TOP: Discrete Probability Distributions The probability distribution for the number of goals the Lions soccer team makes per game is given below. | Number | | |----------|-------------| | Of Goals | Probability | | 0 | 0.05 | | 1 | 0.15 | | 2 | 0.35 | | 3 | 0.30 | | 4 | 0.15 | - 19. Refer to Exhibit 5-10. The expected number of goals per game is - a. 0 - b. - c. 2, since it has the highest probability - d. 2.35 - ANS: D - PTS: 1 - TOP: Discrete Probability Distributions - 20. Refer to Exhibit 5-10. What is the probability that in a given game the Lions will score less than 3 goals? - a. 0.85 - b. 0.55 - c. 0.45 - d. 0.80 - ANS: B - PTS: 1 - TOP: Discrete Probability Distributions ## Exhibit 5-11 A local bottling company has determined the number of machine breakdowns per month and their respective probabilities as shown below: | Number of | | |------------|-------------| | Breakdowns | Probability | | 0 | 0.12 | | 1 | 0.38 | | 2 | 0.25 | | 3 | 0.18 | | 4 | 0.07 | - 21. Refer to Exhibit 5-11. The expected number of machine breakdowns per month is - a. 2 - b. 1.70 - c. one, since it has the highest probability - d. at least 4 - ANS: B - PTS: 1 - TOP: Discrete Probability Distributions - 22. Refer to Exhibit 5-11. The probability of no breakdowns in a month is - a. 0.88 - b. 0.00 - c. 0.50 - d. 0.12 ANS: D PTS: 1 TOP: Discrete Probability Distributions #### Exhibit 5-13 Oriental Reproductions, Inc. is a company that produces handmade carpets with oriental designs. The production records show that the monthly production has ranged from 1 to 5 carpets. The production levels and their respective probabilities are shown below. | Production | Probability | | |------------|--------------------------|--| | Per Month | | | | X | $\mathbf{f}(\mathbf{x})$ | | | 1 | 0.01 | | | 2 | 0.04 | | | 3 | 0.10 | | | 4 | 0.80 | | | 5 | 0.05 | | - 23. Refer to Exhibit 5-13. The standard deviation for the production is - a. 4.32 - b. 3.74 - c. 0.374 - d. 0.612 ANS: D PTS: 1 TOP: Discrete Probability Distributions - 24. A probability distribution showing the probability of x successes in n trials, where the probability of success does not change from trial to trial, is termed a - a. uniform probability distribution - b. binomial probability distribution - c. hypergeometric probability distribution - d. normal probability distribution ANS: B PTS: 1 TOP: Discrete Probability Distributions - 25. Twenty percent of the students in a class of 100 are planning to go to graduate school. The standard deviation of this binomial distribution is - a. 20 - b. 16 - c. 4 - d. 2 ANS: C PTS: 1 TOP: Discrete Probability Distributions | | b. a discrete random variablec. any distribution, as long as it is not normald. None of these alternatives is correct. | | | | | | |-----|--|--|--------------------------------|-------------------------------------|-----------|---| | | AN | S: B | PTS: | 1 | TOP: | Discrete Probability Distributions | | 27. | a.
b.
c. | at least 2 outcome
the probability ce
the trials are independent of these al | nes are j
hanges
ependei | possible
from trial to tri
nt | | omial experiment? | | | AN | S: C | PTS: | 1 | TOP: | Discrete Probability Distributions | | 28. | valı
a.
b. | oume that you have ue of this distribute 0.50 0.30 100 50 | | omial experime | nt with | p = 0.5 and a sample size of 100. The expected | | | AN | S: D | PTS: | 1 | TOP: | Discrete Probability Distributions | | 29. | a.
b.
c. | e standard deviation
$\sigma(x) = P(1 - P)$ $\sigma(x) = nP$ $\sigma(x) = nP(1 - P)$ None of these al | | | oution is | S | | | AN | S: D | PTS: | 1 | TOP: | Discrete Probability Distributions | | 30. | a. | e variance for the
var(x) = P(1 - P)
var(x) = nP
var(x) = n(1 - P)
var(x) = nP(1 - P) |) | al probability d | istributi | ion is | | | AN | S: D | PTS: | 1 | TOP: | Discrete Probability Distributions | | 31. | | sume that you have ribution is 20 12 3.46 144 | e a bino | omial experime | nt with | p = 0.4 and a sample size of 50. The variance of this | | | AN | S: B | PTS: | 1 | TOP: | Discrete Probability Distributions | | | | | | | | | 26. The binomial probability distribution is used with a. a continuous random variable The student body of a large university consists of 60% female students. A random sample of 8 students is selected. - 32. Refer to Exhibit 5-2. What is the probability that among the students in the sample exactly two are female? - a. 0.0896 - b. 0.2936 - c. 0.0413 - d. 0.0007 ANS: C PTS: 1 TOP: Discrete Probability Distributions - 33. Refer to Exhibit 5-2. What is the probability that among the students in the sample at least 6 are male? - a. 0.0413 - b. 0.0079 - c. 0.0007 - d. 0.0499 ANS: D PTS: 1 TOP: Discrete Probability Distributions #### Exhibit 5-4 Forty percent of all registered voters in a national election are female. A random sample of 5 voters is selected. - 34. Refer to Exhibit 5-4. The probability that there are no females in the sample is - a. 0.0778 - b. 0.7780 - c. 0.5000 - d. 0.3456 ANS: A PTS: 1 TOP: Discrete Probability Distributions ## Exhibit 5-7 The probability that Pete will catch fish when he goes fishing is .8. Pete is going to fish 3 days next week. Define the random variable X to be the number of days Pete catches fish. - 35. Refer to Exhibit 5-7. The probability that Pete will catch fish on one day or less is - a. .008 - b. .096 - c. .104 - d. .8 ANS: C PTS: 1 **TOP:** Discrete Probability Distributions - 36. Refer to Exhibit 5-7. The variance of the number of days Pete will catch fish is - a. .16 - b. .48 - c. .8 - d. 2.4 ANS: B PTS: 1 TOP: Discrete Probability Distributions