COMM 215: Business Statistics Solution to Practice Problems 2

Sampling Distributions

1 a)
$$P(\overline{x} < 240)$$
 or $P(\overline{x} > 260) = P\left(z < \frac{240 - 250}{7.5/\sqrt{20}}\right) + P\left(z > \frac{260 - 250}{7.5/\sqrt{20}}\right)$
 $P(z < -5.96) + P(z > 5.96) \approx 0$
b) $z = 1.04, \quad \frac{x - 250}{7.5} = 1.04, \quad \Rightarrow x = 257.8$

2
$$\sigma / \sqrt{n} = \frac{5.5}{\sqrt{50}} = 0.778$$
 $P(20 \le x \le 23) =$
 $P\left(\frac{20 - 22}{0.778} \le z \le \frac{23 - 22}{0.778}\right) = P(-2.57 \le z \le 1.285) = 0.8964$
3 $P(\overline{p} \ge 0.10) = P\left(z \ge \frac{0.10 - 0.08}{\sqrt{\frac{(0.08)(0.92)}{400}}}\right) = 0.0708$ $\sigma_{\overline{p}} = 0.01356$

4 a)
$$\overline{p} = \frac{15}{100} = 0.15$$

b)
$$P(\overline{p} \le .015) = P\left(z \le \frac{0.15 - 0.25}{\sqrt{\frac{(.25)(.75)}{100}}}\right)$$

 $P(z \le -2.31) = .5 - .4896 = .0104$

5 a)
$$P(\overline{x} \ge 26.2) = P\left(z \ge \frac{26.2 \cdot 25}{3/\sqrt{36}}\right) = P(z \ge 2.4) = .5 - .4918 = .0082$$

>

b) No, the probability is very small and is therefore very unlikely.

$$6 \qquad P(\overline{p} \ge .75) = P\left(z \ge \frac{.75 \cdot .70}{\sqrt{\frac{(.70)(.30)}{200}}}\right) = P(z \ge 1.543) = 0.0618$$

$$7 \qquad a) \qquad \sigma_{\overline{p}} = \sqrt{\frac{(.10)(.90)}{400}} = 0.015$$

$$b) \qquad P(.09 \le \overline{p} \le .10) = P\left(\frac{.09 \cdot .10}{.015} \le z \le \frac{.10 - .10}{.015}\right) = P(-0.67 \le z \le 0) = 0.2486$$

$$c) \qquad P(\overline{p} < .08) = P\left(z < \frac{.08 \cdot .10}{.015}\right) = P(z < -1.33) = ..5 - .4082 = 0.0918$$

Estimation and Hypothesis Testing

1 a)
$$H_0: \mu = 105$$
 $t_{01,14d,f.} = -2.264$ $t = \frac{95.53 - 105}{15.39/\sqrt{15}} = -2.38$
 $H_1: \mu < 105$
 $-2.38 > -2.626$ do not reject H_0
insufficient evidence to conclude that mean < 105
b) $t_{05,14d,f.} = -1.761$ $-2.38 < -1.761$ you would reject H_0
c) $.01
2 a) $n = \frac{(1.645)^2(.6)(.4)}{(.03)^2} = 721.6 = 722$
b) $n = \left(\frac{1.645(5)}{(.5)}\right)^2 = 270.6 = 271$
c) $110 \pm 1.96 \left(\frac{6}{\sqrt{70}}\right)$, or 110 ± 1.406 , or $(108.59,111.406)$
3 a) $\begin{cases} H_{0,\mu=10.8} & t = \frac{10.2 - 10.8}{1.25/\sqrt{16}} = -1.92; \text{ p-value: } 0.025
b) $t_{.025,15d,f.} = 2.131$ Since $-1.92>-2.131$ DO NOT REJECT H_0
4 type I: Approving a below standard shipment
type II: Refusing a shipment that is up to standard
5 a) $73 \pm 3.182 \left(\frac{1.414}{\sqrt{4}}\right) 73 \pm 2.25$
b) $H_0: \mu = 77$
 $H_1: \mu < 77$ reject H_0 if $t < -2.353$
 $t = \frac{73 - 77}{1.414/\sqrt{4}} = -5.6577$$$

Reject H₀ and conclude that there is sufficient evidence to support the mean emission is less than 77 mg per cubic meter of exhaust.

6 a) $H_0: \mu = 5$ Reject H_0 if t>1.1812 $H_1: \mu > 5$ $t = \frac{6.09 - 5}{6.010} = 0.564$. DO NOT Reject

$$t = \frac{6.09 - 5}{6.41/\sqrt{11}} = 0.564.$$
 DO NOT Reject H_0 .

Insufficient evidence to support the airline's claim. p-value >.10

b)
$$6.09 \pm 2.228 \left(\frac{6.41}{\sqrt{11}} \right) \ 6.09 \pm 4.306 \ (1.784, 10.396)$$

 $H_0: p = 0.04 \quad \text{Reject } H_0 \text{ if } z <-2.33$

7

$$H_1: p < 0.04$$
 $z = \frac{.10 - .04}{\sqrt{\frac{(.04)(.96)}{80}}} = 2.74$

Since 2.74 > -2.33, DO NOT reject H_0 No evidence that p< 0.04. p-value= p(z<2.74)=.9969

8 $H_0: p = .51$

$$H_{_1}:p \neq .51$$

 $p = \frac{690}{1335} = .5169 \text{ Reject H}_{\circ} \text{ if } z > |1.645|$ $z = \frac{.5169 - .51}{\sqrt{\frac{(.51)(.49)}{1335}}} = .5044. \text{ DO NOT REJECT H}_{\circ}. \text{ Insufficient evidence. Reject researcher's claim.}$

9

Assume standardized test scores follow a normal distribution with μ =100, σ =10.

$$\begin{array}{ll} H_0: \mu = 100 \\ H_1: \mu > 100 \end{array} \quad \text{Test Statistic: } \mathbf{Z} = \frac{\overline{X} - 100}{10/\sqrt{n}}; \quad \text{Rejection region: } \mathbf{Z} > \mathbf{Z}_{0.025} = 1.96 \\ \text{with n} = 25, \, \overline{X} = 103, \quad \mathbf{Z} = \frac{103 - 100}{10/\sqrt{25}} = +1.5. \quad \text{Since } \mathbf{Z} = 1.5 < \mathbf{Z}_{0.025} = 1.96, \text{ do not reject at } \alpha = 2.5\% \end{array}$$

Insufficient evidence to support the claim of above average intelligence. p-value = 0.0668.

a)
$$n = \frac{(2.58)^2 (.5)(.5)}{(.02)^2} \approx 4160.25; n=4161$$

b) $0.48 \pm 2.58 \sqrt{\frac{(.48)(.52)}{4161}}$, or 0.48 ± 0.01998 , or $(.46, .50)$

a)
$$60 \pm 1.96 \left(\frac{7.5}{\sqrt{100}} \right)$$

 $60 \pm 1.47 \rightarrow 58.53\%$; 61.47% true mean falls between 58.53%and 61.47% 95% of the time

b)
$$.07 \pm 1.96 \sqrt{\frac{(.07)(.93)}{100}} \rightarrow .07 \pm .05 \rightarrow (0.02, 0.12) \rightarrow 95\%$$
 confidence

True proportion of failing is between 2% and 12%

c)
$$n = \frac{(2.575)^2 (7.5)^2}{(5)^2} = 14.92 = 15 \text{ and } n = \frac{(2.575)^2 (.07)(.93)}{(.1)^2} = 43.7 = 44$$

To satify both conditions n must be at least 44.

COMM 215 – Solution to Practice Problems 2

12 a) i)
$$H_0: p = 0.25$$
 Reject H_0 if $z > |1.96|$
 $H_1: p \neq 0.25$
 $\hat{p} = \frac{15}{35} = 0.4286$ $z = \frac{.4286 - .25}{\sqrt{\frac{(.25)(.75)}{35}}} = 2.44$

Since 2.44>1.96 reject H_0 and conclude that proportion using visual basic is different from 25%.

ii) p-value= $P(z \ge 2.44) \times 2 = .0073 \times 2 = 0.0146$

b) i) average cost > \$40,000 if average day > $\frac{40000-10000}{1200} = 25$ $H_0: \mu = 25$ Reject H_0 if $Z > Z_{0.05} = 1.645$ $H_1: \mu > 25$ $z = \frac{27.2 - 25}{5.5 / \sqrt{35}} = 2.37$

> Since $Z=2.37 > Z_{0.05}=1.645$ Reject H₀. Conclude average day >25. The evidence is sufficient suggesting that mean will exceed \$40,000.

ii) p-value
$$P(z \ge 2.37) = .5 - .4911 = 0.0089$$
.

13 a)
$$\overline{x}=237.829 \text{ s}=36.369$$

 $237.83 \pm 1.645 \left(\frac{36.37}{\sqrt{35}}\right) \quad 237.83 \pm 10.11$
 $(227.72, 247.94)$
b) $\hat{p}=\text{more than } 240 \text{ seconds } =\frac{15}{35} = 0.4285$
 $0.43 \pm 2.575 \sqrt{\frac{(.43)(.57)}{35}}$, or 0.43 ± 0.2155 , or $(0.2145, 0.6455)$
14 $n = \left(\frac{1.96(175.5)}{20}\right)^2 = 295.8 \rightarrow 296$
15 $n = \frac{(1.88)^2(.5)(.5)}{(.055)^2} = 292.099 \rightarrow 293$

16 i)
$$\hat{p} = \frac{800-240}{800} = 0.70 \ \sigma_{\bar{p}} = \sqrt{\frac{(70)(.30)}{800}} = 0.0162 \ 0.70\pm 2.33(.0162) \text{ or } 0.70\pm 0.0377 \ (.6623, .7377) \ \text{ii}) 2.45\pm 1.96 \left(1.3/\sqrt{800}\right) 2.45\pm .09 \ (2.36, 2.54) \ 17 \ n = \left(\frac{2.575(300)}{45}\right) = 294.65=295 \ 18 \ a) 18.30\pm (.025, 8 \ d.f) \ \left(\frac{6.3}{\sqrt{9}}\right) \ 18.30\pm (.025, 8 \ d.f) \ \left(\frac{6.3}{\sqrt{9}}\right)^2 \ 152.47, \ the sample size should be increased to 153.$$
19 a) $H_0;\mu=2.8 \ Reject H_0 \ if z<-1.645 \ H_1;\mu<2.8 \ or \ if t<-1.66 \ z= \frac{2.61-2.8}{0.9/\sqrt{100}} \ = -2.11 \ Since-2.11<-1.645 \ Reject H_0 \ significant evindence that \ \mu<2.8 \ and therefore promotion was not profitable.$
b) p-value p(z<-2.11)=0.5-0.4826=0.0174 \ or \ if t.01\frac{8}{\sqrt{n}} = \frac{9}{\sqrt{n}} \frac{-9}{\sqrt{100}} \ = .09 \ reduced by half = \frac{-09}{2} \ = .045 \ .9/\sqrt{n} \ = .045 \ so \ n=400

Chi-Square Tests

1. $H_0: p_1 = 0.50, p_2 = 0.25, p_3 = 0.15, p_4 = 0.10$

 H_1 : at least one p \neq to specified values χ^2

\mathbf{f}_{i}	ei	χ^{2}
27	30	0.300
19	15	1.067
11	9	0.444
3	6	1.500

 $\chi^2_{0.05,3}$ =7.8147. Since 3.311<7.8147, DO NOT REJECT H₀. Brook's ideas regarding accounts are accurate. (No evidence to reject H₀)

 H_0 : Employment and wage rates are independent 2.

H₁: Employment and wage rates are NOT independent

	Yes	No	
High	18	40	58
	(28.74)	(29.46)	
Low	38	17	55
	(27.26)	(27.74)	
	56	57	113

Re ject if $\chi^2_{0.01,1} = 6.6349$ $\chi^2 = 4.016 + 3.945 + 4.235 + 4.16 = 16.355$ Since 16.355 > 6.6349, reject H₀ and conclude that classification are dependent.

 H_0 : percentage in response categories are independent of type of firm.

 H_1 : percentage in response categories are NOT independent.

	Yes	Neutral	No	
US	50	57	19	126
	(64.465	(46.290)	(15.237)	
Foreign	60	22	7	89
	(45.535)	(32.702)	(10.763)	
	110	79	26	215

 $\chi^2_{.10,2} = 4.605.$ $\chi^2 = 16.06$ Since 16.06 > 4.605, Reject H₀ and conclude H_a. Evidence to indicate the two classification are dependent

b.

3

Sample proportion: $\overline{p} = \frac{50}{126} = .397$

The 90% confidence interval estimate for the percentage of U.S. firms that give hiring preferences to business majors with foreign language skills:

$$0.397 \pm 1.645 \sqrt{\frac{(.397)(.603)}{126}} \\ 0.397 \pm .072 \quad (.325,.469)$$

4.

H₀:p₁=p₂=p₃=p₄=p₅=0.20 H₁: at least one p ≠ 0.20 e_i for each day =362×.20=72.4 , $\chi^2_{.05,4}$ =9.48773 Since χ^2 =4.768 < $\chi^2_{.05,4}$ = 9.48773, DO NOT REJECT H₀. Insufficient evidence to say absenteeism is higher on some days.

5.

 H_0 : preference is independent of experience (no relationship)

H₁ preference is NOT independent of experience

 χ^2_{052} = 5.991. Since χ^2 = 7.40136 > 5.991, Reject H₀.

Sufficient evidence to conclude that preference and experiences are NOT independent. There is a relationship.

6.

a. H₀: Scores are independent of gender

 H_1 : Scores are NOT independent of gender

Reject H₀ if $\chi^2 > \chi^2_{.05,4} = 9.48773$ [(r-1)×(c-1)=4] Test statistics: $\chi^2 = 1.172$ Since 1.172 < 9.487DO NOT Reject H₀ - Scores are independent of Genders

b.
$$p(\overline{x} \le 570) = p\left(z \le \frac{570-550}{75/\sqrt{50}}\right) = 1.89$$

 $p(z \le 1.89) = 0.470610 + 0.5 = 0.9706$

7.

a. H₀: Same result obtained by ABC Inc. H₁: Reason different than obtained by ABC Inc. Reject H₀ if $\chi^2 > \chi^2_{.05,3} = 7.81473$ $\chi^2 = 1.0526 + 2.8125 + 2.3529 + 6.9231 = 13.1411$ Since $\chi^2 = 13.1411 > \chi^2_{.05,3} = 7.81473$, reject H₀ and conclude that reasons are different. H₀: Reason for firing is independent to previous warning

H₀: Reason for firing is dependent to previous warning

Reject H₀ if
$$\chi^2 > \chi^2_{0.10,(4-1)(2-1)} = \chi^2_{0.10,3} = 6.251$$
.
Since $\chi^2 = 5.423 < \chi^2_{0.10,3} = 6.251$, do not reject H₀.

8.

a.

b.

 $\begin{cases} H_0: \text{ Finding a job is independent of working experience} \\ H_1: \text{ Finding a job is NOT independent of working experience} \\ \text{Reject H}_0 \text{ if } \chi^2 > \chi^2_{.05,(r-1)(c-1)} = \chi^2_{.05,2} = 5.99 \\ \text{Test statistics: } \chi^2 = 7.922 \\ \text{Since } 7.922 > 5.99, \text{ Reject H}_0. \\ \text{Finding a job is NOT independent of work experience.} \end{cases}$

b.

$$\begin{cases} H_0 : p_1 = .70; p_2 = .15; p_3 = .15 \\ H_1 : \text{at least one (or two) p is different} \end{cases}$$

Reject H_0 if $\chi^2 > \chi^2_{.10,2} = 4.60517$

Test statistics:

$f_i e_i$	$\frac{(f_i - e_i)^2}{e_i}$
52 56	0.28571
16 12	1.33333
12 12	0.00000
80 80	1.61904

Since 1.61904 < 4.605, do not reject H_0 ; insufficient evidence that proportions differed from the special values.

Simple Linear Regression and Correlation

- 1 a) $\hat{y}=1.4235+0.53x$
 - b) $R^2 = 0.821$. That is, 81.2% of the variation in ABC's rate of return is explained by the market of return.
 - C) $\begin{cases} H_0:\beta_1=0\\ H_0:\beta_1\neq 0 \end{cases}$ t= $\frac{0.53}{0.103}$ =5.15. Since 5.15 > 2.447, reject H₀ and conclude that model is significant.

d)
$$\hat{y}=1.4235+0.53(5)=4.07$$

$$4.07 \pm 3.707 (2.8225 \sqrt{1 + \frac{1}{8} + \frac{(5 - 2.5)^2}{752}} \implies 4.07 \pm 11.137 \text{ or } (-7.067, 15.207)$$

2 a) $\hat{y}=10.548+0.00578x$

For each additional million dollars, the price per share increases by 0.00578 (in \$) while the initial price (constant) is \$10.55

b) $\begin{cases} H_0:\beta_1=0\\ H_0:\beta_1\neq 0 \end{cases}$ $t=\frac{0.00578}{0.0039}=1.49$

p-value = $p(t \ge 1.49) \times 2 \implies (.05 \times 2) \le p \le (.10 \times 2)$, or $.10 \le p \le .20$ So reject H₀ if $\alpha > .20$, but do not reject H₀ if $\alpha < .10$

- c) $R^2 = 0.219$. That is, 21.9% of the variation in price per share is explained by the size of the offering.
- d) $\hat{y}=10.548+0.00578(70)=10.95$. That is, the estimated mean price per share is \$10.95. The 95% confidence interval estimate of the mean price per share for all companies with a size offering of \$70 million:

$$10.95 \pm 2.306(.39)\sqrt{\frac{1}{10} + \frac{(70-64.3)^2}{10155.4}}$$
 or 10.95 ± 0.29 or $(10.66, 11.24)$

3 a)
$$\hat{\beta}_{1} = \frac{SS_{xy}}{SS_{xx}}$$
, where
 $SS_{xy} = 21115.07 - \frac{(92.93)(2725)}{12} = 12.2158$
 $SS_{xx} = 720.22 - \frac{(92.93)^{2}}{12} = 0.554592$
 $SS_{yy} = 619207 - \frac{(2725)^{2}}{12} = 404.917$
 $\hat{\beta}_{1} = \frac{SS_{xy}}{SS_{xx}} = \frac{12.2158}{0.554592} = 22.0267$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1}\bar{x} = \left(\frac{2725}{12}\right) - 22.0267\left(\frac{92.93}{12}\right) = 56.5048$$

 $\hat{y} = 56.5048 + 22.0267x$, For each additional one percent increase in interest rates, the futures index increase by 22.0267 points.

b)
$$\begin{cases} H_{0: \beta_{1}=0} & \text{reject } H_{0} \text{ if } t > \left| t_{.005, 10} \right| = 3.169; \text{ test stat: } t = \frac{\hat{\beta}_{1}}{S_{\hat{\beta}_{1}}} \\ S_{\hat{\beta}_{1}} &= \frac{S}{\sqrt{SS_{xx}}}, \quad S = \sqrt{\frac{(SS_{yy} - \hat{\beta}_{1}SS_{yy})}{(n-2)}} = \sqrt{\frac{404.917 - (22.0267)(12.2158)}{10}} = 3.68567 \\ S_{\hat{\beta}_{1}} &= \frac{3.68567}{\sqrt{0.554592}} = 4.94915, \quad t = \frac{\hat{\beta}_{1}}{S_{\hat{\beta}_{1}}} = \frac{22.0267}{4.94915} = 4.45061 \end{cases}$$

Since t=4.5061 > 3.169, reject H₀ at 5% level of significance and conclude that interest rate is a significant predict of futures index.

p value: .001 <p-value < .002

c)
$$r = \frac{SS_{xy}}{\sqrt{SS_{xx}SS_{yy}}} = \frac{12.2158}{\sqrt{0.554592}\sqrt{404.917}} = 0.815180$$

The value of r suggests a strong positive correlation between interest rates and future index.

d) The 95% confidence interval estimate for the meanfutures index when interest rate is 7.8% :

 $\hat{y} = 56.5048 + 22.0267(7.8) = 228.313;$

$$228.313 \pm 2.228(3.68567)\sqrt{\frac{1}{12} + \frac{(7.8 - 7.74417)^2}{0.554592}}$$

228.313±2.228(3.68567)(0.298252)

228.313±2.44915 or (225.864, 230.762)

Multiple Regression

1 a) Coefficient of $x_2 = -0.021$. The age at death will decrease by 0.021 years for every additional unit of cholestrol level.

> Test statistics: $F = \frac{MSR}{MSE}$ $\begin{cases} H_0: \ \beta_1 = \beta_2 = \beta_3 = 0\\ H_1: \ \text{at least one } \beta_i \neq 0 \end{cases}$ b) Rejection region: $F > F_{.05, 3, 36} = 2.84$ ANOVA table: df SS MS F 3 939 3.49 313 36 3227 89.64 39 4166

Since $F=3.49 > F_{.05, 3, 36} = 2.84$

Reject H₀ and conclude that model is significant in predicting lenght of life.

c)
$$\begin{cases} H_0: \beta_1 = 0\\ H_1: \beta_1 \neq 0 \end{cases}$$
 Test statistics: $t = \frac{\hat{\beta}_1}{S_{\hat{\beta}_1}} \quad t_{0.005, 30}$

Rejection region: $|t| > t_{0.005,36} = 2.724$

$$t = \frac{1.79}{0.44} = 4.068$$

Since t= 4.068 > 2.724, reject H₀ at 1% level of significance and conclude that average number of hours of exercise and age at death are linearly related.

d) $R^2 = 0.225$. That is, 22.5% of the variation in age at death is explained by x_1, x_2 and x_3 .

e)
$$\hat{y} = 55.8 + 1.79 (8) - 0.021 (0.5) - 0.016 (10) = 69.95$$
 years

f) $x_1 =$ average hours of exercise per week because it has largest absolute value of t of 4.068.

2 a) $\hat{y}=10+2.1(1.5)+13.6(3)=$ \$53.95

b)
$$R^2 = \frac{90.400-43.912}{90.400} = 0.5142$$
. That is, 51.42% of the variation in store price is explained

by variations in current dividents and rate of growth.

c)
$$\begin{cases} H_0: \ \beta_1 = \beta_2 = 0\\ H_1: \text{ at least one } \beta_i \neq 0 \end{cases}$$
 Test Statistic: $F = \frac{MSR}{MSE}$ $F_{0.05,2,7}$

Rejection region: $F > F_{0.05,2,7} = 4.47$

$$F = \frac{23244}{6273.143} = 3.7$$

Since $F=3.7 < F_{0.05,2,7}=4.47$, do not reject H_0 . The model is not significant.

d) 2.1(2.25) = \$4.725 increase

3 a)
$$15232.5+2178.4x_1+7.8x_2+2675.2x_3+1157.8x_2$$

b) for each additional room (x_1) , the value of the house will increase by \$2,178.4

c) DF for
$$\begin{cases} SSR & 4\\ SSE & 25 \end{cases}$$

d) $\begin{cases} H_0: \beta_1 = \beta_2 = \beta_3 = \beta_4 = 0\\ H_1: \text{ At least one } \beta_j \neq 0 \end{cases}$ Test statistic: $F = \frac{MSR}{MSE}$ $F_{0.05;4,25}$

Rejection region: $F > F_{0.05;4,25} = 2.76$

- $F = \frac{51060.72}{8235.60} = 6.2$ Since F=6.2 > $F_{0.05;4,25} = 2.76$, reject H₀ and conclude that the model is significant at 5% level.
- e) $\begin{cases} H_0: \beta_1 = 0\\ H_1: \beta_1 \neq 0 \end{cases}$ Test statistics: $t = \frac{\hat{\beta}_1}{S_{\hat{\beta}_1}} \quad t_{0.025,25}$

Rejection region: $|t| > t_{0.025,25} = 2.060$

$$t = \frac{2178.4}{778.0} = 2.8$$

Since $t= 2.8 > t_{0.025,25} = 2.060$, reject H₀ at 5% level and conclude that β_1 significant. The number of rooms (X₁) is an important predictor of value of a house (Y).

f) $R^2 = \frac{204,242.88}{410,132.88} = 0.49799.$

That is, 49.8% of the variation is the value of a house is explained by the 4 independent variables.

g) $\hat{y} = 15,232.5+2,178.4(9)+7.8(7.500)+2.675.2(2)+1.157.8$ = \$99,846.3