

LESSON 5 CONTINUOUS PROBABILITIES

SAMIE L.S. LY

LESSON 4/5 IN A NUTSHELL

DISCRETE PROBABILITIES

FREQUENCY DISTRIBUTION CALCULATIONS BINOMIAL PROBABILITY FUNCTION

UNDERSTAND CONTEXTS

$$f(x) = \frac{n!}{x!(n-x)!} p^{x} (1-p)^{(n-x)}$$

CONTINUOUS PROBABILITES

NORMAL PROBABILITY DISTRIBUTION

• UNDERSTAND Z-TABLE

Standard Normal Probability Distribution

Computing Probabilities

Some Characteristics

C215 SamieL.S.Ly

Bowerman, et al. (2017) pp. 289

Symmetric Distribution

Skewness measure = 0

STANDARD NORMAL PROBABILITY DISTRIBUTION

Standard Normal Probability Distribution

Computing Probabilities

STANDARD NORMAL PROBABILITY DISTRIBUTION

AREAS UNDER THE CURVE

Bowerman, et al. (2017) pp. 295

STANDARD NORMAL PROBABILITY DISTRIBUTION

Bowerman, et al. (2017) pp. 296

STANDARD NORMAL PROBABILITY DISTRIBUTION

Letter z is used to designate the standard normal random variable

P (Z < -2.30) = .0107

P (-1.40 < Z < .60)=

.6449

P (Z > 4.0) = 0

Find z.045 P(Z < z .045) or P(Z > z .045) P(z=-1.70), P(z=1.70)

X is normally distributed with a mean of 100 and a standard deviation of 20. What is the probability that X is greater than 145?

P(X > 145)

X is normally distributed with a mean of 250 and a standard deviation of 40. What value of X does only the top 15% exceed?

The long-distance calls made by the employees of a company are normally distributed with a mean of 6.3 minutes and a standard deviation of 2.2 minutes. Find the probability that a call

a. Lasts between 5 and 10 minutes

$$P(5 < X < 10) = P\left(\frac{5-6.3}{2.2} < \frac{X-\mu}{\sigma} < \frac{10-6.3}{2.2}\right) = P(-.59 < Z > 1.68)$$
$$= P(Z < 1.68) - P(Z < -.59) = .9535 - .2776 = .6759$$

b. Lasts less than 4 minutes

$$P(X < 4) = P\left(\frac{X - \mu}{\sigma} < \frac{4 - 6.3}{2.2}\right) = P(Z < -1.05) = .1469$$

The long-distance calls made by the employees of a company are normally distributed with a mean of 6.3 minutes and a standard deviation of 2.2 minutes. Find the probability that a call

d. How long do the longest 10% of calls last?

P(Z <
$$z_{.10}$$
) = 1 - .10 = .9000;
 $z_{.10}$ = 1.28; $z_{.10} = \frac{x - \mu}{\sigma}$; $1.28 = \frac{x - 6.3}{2.2}$; x = 9.116

Calls last at least 9.116 minutes.

The lifetime of light bulbs that are advertised to last for 5,000 hours are normally distributed with a mean of 5,100 hours and a standard deviation of 200 hours. What is the probability that a bulb lasts longer than the advertised figure?

(2215)

$P(X > 5,000) = P\left(\frac{X - \mu}{\sigma} > \frac{5,000 - 5,100}{200}\right) = P(Z > -.5)$ = 1 - P(Z < -.5) = 1 - .3085 = .6915

How much money does a typical family of four spend at McDonald's restaurants per visit? The amount is a normally distributed random variable whose mean is \$16.40 and whose standard deviation is \$2.75.

a. Find the probability that a family of four spends less than \$10.

$$P(X < 10) = P\left(\frac{X - \mu}{\sigma} < \frac{10 - 16.40}{2.75}\right) = P(Z < -2.33) = .0099$$

b. What is the amount below which only 10% of families of four spend at McDonald's?

$$P(Z < -z_{.10}) = .1000; -z_{.10} = -1.28; -z_{.10} = \frac{x - \mu}{\sigma}; -1.28 = \frac{x - 16.40}{2.75}; x = 12.88$$

The final marks in a statistics course are normally distributed with a mean of 70 and a standard deviation of 10. The professor must convert all marks to letter grades. She decides that she wants 10% A's, 30% B's, 40% C's, 15% D's, and 5% F's. Determine the cut offs for each letter grade.

The final marks in a statistics course are normally distributed with a mean of 70 and a standard deviation of 10. The professor must convert all marks to letter grades. She decides that she wants 10% A's, 30% B's, 40% C's, 15% D's, and 5% F's. Determine the cut offs for each letter grade.

A:
$$P(Z < z_{.10}) = 1 - .10 = .9000; z_{.10} = 1.28; z_{.10} = \frac{x - \mu}{\sigma}; 1.28 = \frac{x - 70}{10}; x = 82.8$$

B:
$$P(Z < z_{.40}) = 1 - .40 = .6000; z_{.40} = .25; z_{.40} = \frac{x - \mu}{\sigma}; .25 = \frac{x - 70}{10}; x = 72.5$$

C:
$$P(Z < -z_{.20}) = .2000; -z_{.20} = -.84; -z_{.20} = \frac{x - \mu}{\sigma}; -.84 = \frac{x - 70}{10}; x = 61.6;$$

D:
$$P(Z < -z_{.05}) = .0500; -z_{.05} = -1.645; -z_{.05} = \frac{x - \mu}{\sigma}; -1.645 = \frac{x - 70}{10}; x = 53.55$$

 TABLE 1
 CUMULATIVE PROBABILITIES FOR THE STANDARD NORMAL DISTRIBUTION (Continued)

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09	z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010	.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
											.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014	.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019	.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026	.4	6554	6591	6628	6664	6700	6736	6772	6808	6844	6879
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036							10120				
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048	.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
-24	0082	0080	0078	0075	0073	0071	0060	0068	0066	0064	.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
-2.4	0107	.0080	0102	.0075	.0075	.0071	.0009	.0008	.0000	.0004	.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
2.5	0120	.0104	.0102	.0099	.0090	0122	0110	.0009	.0007	0110	.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
-2.2	.0139	.0150	.0152	.0129	.0123	0159	.0119	.0110	.0115	.0110	.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
-2.1	.0179	.0174	.0170	.0100	.0102	.0136	0107	.0150	.0140	0193											
-2.0	.0226	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0100	.0165	1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233	1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294	1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367	1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455	1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559								0.000			
	0000			0.74	0.7.10			0.000	0.001		1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681	1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
-1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823	1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985	1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
-1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170	1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379	2.0	0772	0779	0792	0700	0702	0709	0902	0000	0912	0917
- 9	1841	.1814	1788	1762	.1736	.1711	1685	1660	1635	.1611	2.0	.9112	.9//6	.9/63	.9/00	.9793	.9798	.9803	.9606	.9812	.9817
8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867	2.1	.9821	.9820	.9830	.9834	.9838	.9842	.9840	.9850	.9834	.9857
7	.2420	2389	2358	2327	.2296	.2266	.2236	.2206	.2177	.2148	2.2	.9861	.9864	.9868	.98/1	.9875	.9878	.9881	.9884	.9887	.9890
- 6	2743	2709	2676	2643	2611	2578	2546	2514	2483	2451	2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
- 5	3085	3050	3015	2981	2946	2912	2877	2843	2810	2776	2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
				.2901	.2010					.2770	2.5	0038	9940	9941	9943	9945	9946	9948	9949	9951	9952
4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121	2.5	0053	0055	0056	0057	0050	0060	0061	0062	0063	0064
3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483	2.0	0065	.9955	0067	0068	0060	.9900	0071	0072	.9903	0074
2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859	2.7	.9905	.9900	.9907	.9908	.9909	.9970	.9971	.9972	.9975	.9974
1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247	2.8	.9974	.9973	.9970	.9977	.9977	.9978	.9919	.9979	.9980	.9981
0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641	2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9980	.9980
											3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
											2.0										

First the Foundation, then Innovation