

LESSON TWO DESCRIPTIVE STATISTICS

SAMIE L.S. LY

Qualitative and Quantitative Data

Describe Central Tendency

Measures of Variation

Percentiles, Quartiles, and Box and Whiskers.

Midterm Preparation

3

DESCRIBING QUALITATIVE DATA

- FREQUENCY DISTRIBUTION
- RELATIVE FREQUENCY DISTRIBUTION
- PERCENT FREQUENCY DISTRIBUTION
- BAR CHARTS, PIE CHARTS

INTEREST IN YOUR MAJOR?

FREQUENCY DISTRIBUTION is

a tabular summary of data showing the number of items in each of several non-overlapping classes.

INTEREST IN MAJOR	FREQUENCY
WELL-PAYED JOB	49
PROMOTION	3
GRAD SCHOOL	41
NO CLUE	19
FREE	1
	113

RELATIVE FREQUENCY

FREQUENCY + TOTAL N

Bowerman, et al. (2017) pp. 55

RELATIVE FREQUENCY

FREQUENCY + TOTAL N

INTEREST IN MAJOR	FREQUENCY	RELATIVE FREQUENCY
WELL-PAYED JOB	49	
PROMOTION	3	0.027
GRAD SCHOOL	41	0.363
NO CLUE	19	
FREE	1	0.009
TOTAL	113	

Bowerman, et al. (2017) pp. 55

INTEREST IN YOUR MAJOR?

PERCENT FREQUENCY: RELATIVE FREQUENCY X 100

INTEREST IN MAJOR	FREQUENCY	RELATIVE FREQUENCY	PERCENT FREQUENCY
WELL-PAYED JOB	49	0.434	43.363
PROMOTION	3	0.027	2.655
GRAD SCHOOL	41	0.363	
NO CLUE	19	0.168	16.814
FREE	1	0.009	0.885
TOTAL	113	1.000	100.000

INTEREST IN YOUR MAJOR?

PERCENT FREQUENCY: RELATIVE FREQUENCY X 100

BAR GRAPH

Sample Size: 120 STUDENTS

0

UNIVERSITY STATUS

COMM215 Eistibe Equidation theologouation

Bowerman, et al. (2017) pp. 58

UNIVERSITY STATUS + WORK

Sample size: **120** STUDENTS

SUMMARIZING QUALITATIVE DATA

Qualitative Data

- Grouped by specific categories.
- Used either the <u>NOMINAL</u> scale or the <u>ORDINAL</u> scale of measurement.
- NOMINAL: 1: Male, 2: Female
- ORDINAL: Excellent, Very Good, Good, Poor

SUMMARIZING QUANTITATIVE DATA

FREQUENCY DISTRIBUTION

- Relative Frequency
- Percent Frequency

CUMULATIVE DISTRIBUTION

- Cumulative Relative Frequency
- Cumulative Percent Frequency
- HISTOGRAM

BUILDING A HISTOGRAM

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20

NUMBER OF CLASSES

```
I CHOSE TO HAVE 7 CLASSES,
```

[0-2], [3-5], [6-8], [9-11] , [12-14], [15-17],[18-20]

CLASS LIMITS

Each Item belongs to one class and not the other. 2 HOURS OF SLEEP FALLS INTO [0-2] 3 HOURS OF SLEEP FALLS INTO [3-5]

			<u>1+8+93</u> = 102					
	SLEEP TIME		REI	ATIVE		CENT		
	PER DAY	FREQUENC	FREC	QUENCY	FREQ	UENCY		
	0-2	1	0	.008	0.8	847		
	3-5	8 🖌	0	.068	6.7	780		
	6-8	93	0	.788	78.	.814		
	9-11	16	0	.136	13.	559		
	TOTAL	118		1		00		
				CUMUL	ATIVE	CUMU	LATIVE	
		CUM	CUMULATIVE		RELATIVE		CENT	
SLEEP 1	TIME PER DAY	FRE		FREQU	ENCY	FREQU	JENCY	
LESS TH	HAN OR EQUAL T	0 2	1	0.00)8	0.8	47	
LESS THAN OR EQUAL TO 5 9		9			7.627			
LESS TH	HAN OR EQUAL T	08						
LESS THAN OR EQUAL TO 11		118	1.00		100.	000		

SLEEP TIME		RELATIVE
PER DAY	FREQUENCY	FREQUENCY
0-2	1	0.008
3-5	8	0.068
6-8	93	0.788
9-11	16	0.136
TOTAL	118	1

		CUMULATIVE	CUMULATIVE
	CUMULATIVE	RELATIVE	PERCENT
SLEEP TIME PER DAY	FREQUENCY	FREQUENCY	FREQUENCY
LESS THAN OR EQUAL TO 2	1	0.008	0.847
LESS THAN OR EQUAL TO 5	9		7.627
LESS THAN OR EQUAL TO 8			
LESS THAN OR EQUAL TO 11	118	1.000	100.000

HISTOGRAM FOR SLEEP TIME

OGIVE

A graph of a cumulative distribution

STEM AND LEAF DISPLAY

A way to summarize number distributions

72	48	
54	59	
9	50	
9	51	
9	52	6
321	53	7
986	54	5
77755443221	55	556
977	56	024789
96220	57	23466679
766544422211000	58	00034444556678889
99988877643333210	59	01223355567788899
743211110	60	0001223344445677789
887655544322110	61	22224444555566777789
999988875544322110	62	00112223334444667777889999
98665543333321000	63	001122345556688899999
9888877665543332211110	64	000001122245566689
985544200	65	12334677789
99866422220	66	00478
77664	67	00136
9331	68	8
8210	69	
	70	
9	71	
	72	
3	73	

Bowerman, et al. (2017) pp. 76

DATA SET: 25, 26, 30, 31, 32

STEM AND LEAF DISPLAY

LEAF UNIT 56 2 LEAF UNIT = 1 012 3 DATA SET: 26 × 1 25 × 1 LEAF UNIT = 10 25 x 10 26 x 10 DATA SET: 250, 260 LEAF UNIT = 0.125 x 0.1 26 x 0.1 DATA SET: 2.5, 2.6

Bowerman, et al. (2017) pp. 76

PROBLEM # 2.1

A large investment firm on Wall Street wants to review the distribution of ages of its stockbrokers. The firm believes that this information can be useful in developing plans to recruit new brokers. The ages of a sample of 40 brokers are shown here.

46	28	51	34	29	40	-38	33	41	52
53	40	50	33	36	41	-25	38	37	41
36	50	46	33	- 61	48	32	28	30	49
41	37	26	39	35	39	46	26	31	35

- a. Draw a stem and leaf display
- b. Draw a histogram

STEM AND LEAF

CHOOSE YOUR UNIT

- **LEAF UNIT: 1**
- 2 5 6 6 8 8 9
- 3 0 1 2 3 3 3 4 5 5 6 6 7 7 8 8 9 9
- 4 0 0 1 1 1 1 6 6 6 8 9
- 5 0 0 1 2 3
- 6| 1

HISTOGRAM PROBLEM # 2.1

NUMBER OF CLASSES

Largest value = 61 , Smallest value = 25 6 classes [61-25]/6 = 6

CLASS WIDTH

[25-31], [32-38], [39-45], [46-52], [53-59], [60-66]

PROBLEM # 2.2

What is the difference between a histogram ad a bar chart? For what type of data would each be appropriate?

A histogram graphically displays

- class intervals
- class frequencies.

A bar chart displays

• frequencies for a set of categories or classes.

Histograms are appropriate for quantitative data Bar charts are better for qualitative data.

Describe Central Tendency

Measures of Variation

Percentiles, Quartiles, and Box and Whiskers.

Midterm Preparation

MEASURES OF LOCATION

- MEAN
- MEDIAN
- MODE

COMM 215

PROBLEM # 2.5

Consider the following sample of n = 7

measurements: 5, 7, 4, 5, 20, 6, 2.

- a. Calculate the mean of this sample.
- b. Calculate the median of this sample.
- c. Eliminate the last measurement (2) and calculate the median, n=6
- d. What is the mode?

PROBLEM # 2.5

Consider the following sample of n = 7

measurements: 5, 7, 4, 5, 20, 6, 2.

a. Calculate the mean of this sample.

ARRANGE NUMBERS in ORDER

MEDIAN- MIDDLE VALUE

EVEN NUMBER OF N

Median is the <u>average of</u> <u>the two middle</u> values

n = 6

6/2 = 3

Take the 3rd and 4th value and make an average.
Consider the following sample of n = 7 measurements: 5, 7, 4, 5, 20, 6, 2.

- b. Calculate the median of this sample.
- c. Eliminate the last measurement (2) and calculate the median, n= 6

2, 4, 5, 5, 6, 7, 20 Median's position: 7/2 = 3.5 ROUND UP at the 4th position

Median (m) = 5

4, 5, 5, 6, 7, 20

Median's position: 6/2 = 3Average of 3rd and 4th position.

Median (m) = (5+6)/2 = 5.5

Consider the following sample of n = 7 measurements: 5, 7, 4, 5, 20, 6, 2.

d. What is the mode?

Mode = 5

MODE: The Most Repeated Number in your sample

NEW Data Set: 5, 7, 4, 5, 20, 6, 2,7

Which are the modes? 5&7

SHAPES OF HISTOGRAMS...

Skewness

A skewed histogram is one with a long tail extending to either the right or the left:

SKEWNESS

Bowerman, et al. (2017) pp.139

A reading test with 120 possible points yields a bell-shaped distribution with scores ranging from 5 to 50 on a large sample of third graders. If the same test were administered to first graders, what would we expect the form of the frequency distribution to be?

Measures of Variation

Percentiles, Quartiles, and Box and Whiskers.

Midterm Preparation

MEASURES OF VARIATION

- RANGE
- VARIANCE
- STANDARD DEVIATION
- COEFFICIENT OF VARIATION

Data set: 0, 7, 12, 5, 33, 14, 8, 0, 9, 22

c. Calculate the standard deviation

SAMIE LY COMM 215

STANDARD DEVIATION is measured in the **SAME UNITS** as the data, therefore easier to interpret. How large is the **Standard Deviation** from the mean. **Population** Sample **Coefficient of Variation:** $(Standard Deviation \times 100)\%$ $\sigma = \gamma$ S =Mean

PAGE 105 Groebner et al. (2014)

Data set: 0, 7, 12, 5, 33, 14, 8, 0, 9, 22

c. Calculate the standard deviation

SAMIE LY COMM 215

Answer the following questions about variability of data sets:

- a. What is the primary disadvantage of using the range to compare the variability of data sets?
- b. Can the variance of a data set ever be negative? Explain.
- c. Can the variance ever be smaller than the standard deviation? Explain.

COMM 215

b. Can the variance of a data set ever be negative? Explain.

The variance can never be negative due to the squared deviations from the mean.

The square of any number , positive or negative will become positive.

The variance is always positive

c. Can the variance ever be smaller than the standard deviation? Explain.

The variance is usually greater than standard deviation.

HOWEVER, if the data are between 0 and 1, the variance will be smaller than the standard deviation.

Try this! $s^2 = 4$, what is the standard deviation? $s^2 = 0.8$, what is the standard deviation?

ESTIMATING DATA

- EMPIRICAL RULE
- CHEBYCHEV'S THEOREM

ESTIMATING DATA

Quiz Grades

The annual salaries of the employees of a chain of computer stores produced a positively skewed histogram. The mean and standard deviation are \$ 28,000 and \$3,000 respectively. What can you say about the salaries at this chain?

NOTE: The histogram is not bell shaped, therefore you cannot use Empirical Rule. You must use Chebychev's theorem instead.

At least 75% of the salaries lie WITHIN 2 STANDARD DEVIATION 28,000 - 2 (3,000) = 22,000\$ 28,000 + 2 (3,000) = 34,000\$

At least 88.9% of the salaries lie WITHIN 3 STANDARD DEVIATION 28,000 – 3(3,000) = 19,000\$ 28,000 + 3(3,000) = 37,000\$

Land purchase decision. A buyer for a lumber company must decide whether to buy a piece of land containing 5,000 pine trees. If 1,000 of the trees are at least 40 feet tall, the buyer will purchase the land; otherwise, he won't. The owner of the land reports that the height of the trees has a mean of 30 feet and a standard deviation of 3 feet. Based on this information, what is the buyer's decision?

COMM 215

Using Chebychev's rule, at 3 standard deviation

Will not buy because it is not 20% =1000/5000

OUTLIERS USING Z-SCORE

Z-score = 1, at 1 standard deviation from the mean

Z-score = 2, at 2 standard deviation from the mean

Z-score = 3, at 3 standard deviation from the mean

$$z = \frac{x - \overline{x}}{s}$$

Any value outside of 3 standard deviation is considered an outlier.

Percentiles, Quartiles, and Box and Whiskers.

Midterm Preparation

PERCENTILES, QUARTILES, AND BOX AND WHISKERS

- PERCENTILE
- INTERQUARTILE RANGE (IQR)
- BOX PLOTS
- FIVE NUMBER SUMMARY

Arrange the dataset by ascending order (smallest-largest)

Compute i

i = (p/100)n

- (a) If it is not an integer, ROUND UP
- (b) If it is an integer, the pth percentile is the average of the values in position i and i +1

QUARTILES are 25th, 50th, 75th percentiles.

Data set: 0, 7, 12, 5, 33, 14, 8, 0, 9, 22

a. Calculate the 50^{th,} 25th percentiles of the data above.

b. Find the interquartile range

COMM 215

$$i = (p/100)n$$

Data set: 0, 7, 12, 5, 33, 14, 8, 0, 9, 22

a. Calculate the 50^{th,} 25th percentiles of the data above.

Order Data set: 0, 0, 5, 7, 8, 9, 12, 14, 22, 33.

- i = (50/100) * 10 = 5= $(5^{\text{th}} \text{ value} + 6^{\text{th}} \text{ value})$ i = (25/100) * 10 = 2.5 Round up!= $3^{\text{rd}} \text{ value}$
 - $= \frac{(8+9)}{2} = 8.5$ The 25th percentile value = 5

The 50th percentile value = 8.5

INTERQUARTILE RANGE (IQR)

Q3 (75th percentile) – Q1 (25th percentile) = IQR

The largest number – smallest number in your sample is considered the RANGE. Example: 20-2 = 18.

Bowerman, et al. (2017) pp.157

$$i = (p/100)n$$

Data set: 0, 7, 12, 5, 33, 14, 8, 0, 9, 22

b. Find the interquartile range

Order Data set: 0, 0, 5, 7, 8, 9, 12, 14, 22, 33.

i = (75/100) * 10 = 7.5 Round up!

= 8th value

The 75th percentile value = 14

BOX PLOT & WHISKERS

Smallest observation

Largest observation

First Quartile (Q1)

Second Quartile (Q2)

Third Quartile (Q3)

Interquartile Range (IQR)

Upper Fences, Lower Fences (Inner and Outer)

Whiskers

Outliers

Upper Inner Fence, Lower Inner Fence

• 1.5(IQR) below Q1

BOX PLOT

• 1.5(IQR) above Q3

Upper Outer Fence, Lower Outer Fence

- 3(IQR) below Q1
- 3(IQR) above Q3

Whiskers

Smallest and Largest values WITHIN THE LIMITS

Outliers

For Box Plot: Outside the Limits

For Empirical/Chebychev's Rule: Outside the 3rd Std Dev

PROBLEM # 2.13

Suppose a data set consisting of exam scores has a lower quartile $Q_L = 60$, a median m = 75, and an upper quartile $Q_U = 85$.

The scores on the exam range from 18 to 100. Without having the actual scores available to you, construct as much of a box plot as possible.

Partial Data: 18, 25....100

FIVE NUMBER SUMMARY

Smallest observation

Largest observation

First Quartile (Q1)

Second Quartile (Q2)

Third Quartile (Q3)

Interquartile Range (IQR)

Upper Fences, Lower Fences (Inner and Outer)

Whiskers

Outliers

One of the major measures of the quality of service provided by any organization is _____.

The **Speed**

with which it responds to customer complaints.

The data below give

the number of waiting days

Between the receipt and resolution of a complaint

HOX PLOT PROBLEM

A cellphone software company was receiving complaints about the installation of cellphone software.

The experimental unit to the data is: Waiting Days

72 29	20 31	29 27	23 60	30 13	27 51	25 36	32 5	4 26	29 1
12	22	14	28	35	26	9	34	З	1

72	20	29	23	30	27	25	32	4	29
29	31	27	60	13	51	36	5	26	1
12	22	14	28	35	26	9	34	З	1

Construct a box plot for the data set and comment on the nature of the plot including identifying outliers, if any.

72	20	29	23	30	27	25	32	4	29
29	31	27	60	13	51	36	5	26	1
12	22	14	28	35	26	9	34	З	1

Compute the proportion of observations that are within one, two and three standard deviations of the mean. Does the empirical rule apply for this data set? Identify outliers, if any.

72	20	29	23	30	27	25	32	4	29
29	31	27	60	13	51	36	5	26	1
12	22	14	28	35	26	9	34	З	1

To improve services, management wants to grant a special offer to customers whose complaints take unnecessarily longer periods to resolve. However, it is desirable that no more than 25% of the customers who lodge a complaint would receive the special offer. Approximately, what number of waiting days between the receipt and resolution of a complaint may be used for the cutoff?

PREVIEW ON LESSON 3

SAMIE LY COMM 215

REFERENCES

Keller, G. (2012). *Statistics for management and economics.* Mason: Cengage Learning.

McClave, J. T., Benson, G. P., & Sincich, T. (2008). *Statistics for Business and Economics.* New Jersey: Prentice Hall.

Weiers, R. M. (2011). *Introduction to Business Statistics.* Mason: Cengage Learning.

(GMAC), F. t. (Ed.). (2005). *GMAT -Quantitative Review.* Oxford, UK: Blackwell.

